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Relaxation of classical particles in two-dimensional anharmonic single-well potentials
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The canonical ensemble relaxation function of a particle in a symmetric anharmonic potential well inD
51 is known to exhibit slow algebraic behavior@S. Sen, R. S. Sinkovits and S. Chakravarti, Phys. Rev. Lett.
77, 4855~1996!; R. S. Sinkovits, S. Sen, J. C. Phillips, and S. Chakravarti, Phys. Rev. E59, 6497~1999!#. In
the present work, we report a study of relaxation of a particle in symmetric and asymmetric quartic anharmonic
potential wells of the formV(x,y)5

1
2 (x21Cy2)1

1
4 (x21Cy2)2 in D52. The relaxation in the above system

is identical to that inD51 wells whenC50 ~since it is then aD51 system! and C51. However, for 0
,C,1 and forC@1, the frequencies associated with well dynamics are strongly affected and hence the power
spectra are altered as a function ofC. Our calculations suggest that the exponents of the long-time tails
associated with the relaxation processes are insensitive toD. In closing, we comment on the consequences of
our analysis for the study of slow dynamics in interacting many-particle systems that are connected by
harmonic springs with the individual particles in anharmonic potential wells.
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I. INTRODUCTION

The study of relaxation processes in disordered latti
remains a problem of fundamental interest in the physics
glassy systems@1,2#. An essential difficulty encountered i
studying the dynamics of these systems concerns the lim
tions in our ability to study relaxation processes of the
systems across many decades in time@3#. Such limitations
force us to make assumptions about ergodicity and no
godicity of these systems@4#. These assumptions typicall
remain unproven. The available theories of glassy relaxa
are therefore purely phenomenological, leaving signific
voids in our understanding of the microscopic dynami
processes in these systems and in our ability to predict
control the properties of glassy systems@5#.

In the present study, we build on earlier work to addre
the problem of nonlinear dynamics at fixed energies and
canonical ensemble relaxation functions at fixed tempera
in single anharmonic wells inD52. We refer to arguments
presented in detail in Refs.@6#,@7#, which imply that such a
study might be relevant to the development of a microsco
understanding of the long-time relaxation processes enc
tered in studying the dynamics of disordered interacting s
tems.

This article is arranged as follows. In Sec. II, we pres
the model system and outline the method of study. In Sec
we present the canonical ensemble results for the symm
two-dimensional~2D! system. In Sec. IV we probe the mo
difficult asymmetric quartic well potential that can be cha
acterized by a parameterC ~defined below! taking values
between 0 and̀ . We find linearity in the directional fre-
quencies as a function of energy as we approach zero en
which in turn allows us to infer the long-time tail in th
canonical ensemble relaxation function@9#, in a D52 asym-
metric single-quartic-well potential. The study is summ
1063-651X/2001/63~2!/021114~5!/$15.00 63 0211
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rized in Sec. V with comments on the possible future
our efforts.

II. THE MODEL AND ITS ANALYSIS

We begin by considering a system defined by the pot
tial

V~x,y!5
A

2
~x21Cy2!1

B

4
~x21Cy2!2 ~1!

whose behavior is controlled by the parameters~A,B,C!. In
the present study we takeA5B51. ~We remind the reade
that A521 leads to a double-well potential, which we d
not address in this work@6,7,9#.! The parameterC controls
the symmetry of the potential surface.C50 and 1 yield a
D51 system and the planar-symmetricD52 system, re-
spectively. The other values ofC yield a D52 surface with
planar asymmetry. As we shall see,C50 and 1 lead to re-
laxation behavior observed inD51. Interesting behavior
arises whenCÞ1. This case is discussed in Sec. IV.

The equations of motion for this system are

ẍ52Ax2Bx32BCxy2, ~2!

ÿ52ACy2C2By32BCx2y, ~3!

and represent an unsolved set of equations whose solutio
numerically constructed using the velocity version of t
Verlet algorithm, with step size of 0.01 time units. Note th
all values in this and subsequent equations are dimens
less. Observe that forC50 Eqs.~2! and ~3! reduce to the
well known equation for the Duffing oscillator@8#. The dy-
namics of the Duffing oscillator was solved back in 191
Relaxation in Duffing potentials has been reported in@6,7,9#.
©2001 The American Physical Society14-1
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A. Symmetric potentials

In a previous study@6,7# for symmetric potentials, it was
shown that the relaxation behavior at fixed temperatures,
in canonical ensembles, is obtained by performing a Bo
mann weighted sum of relaxation functions atfixed energies
~i.e., in the context of a microcanonical ensemble conte!.
The normalized relaxation function of some dynamical va
able C(t,E) in the canonical ensemble is then given by
energy integration over various levels of the microcanon
ensemble relaxation function,

K C~ t !C~0!

C2~0!
L

b

5
**E,t8C~ t8,E!C~ t81t,E!g~E!exp~2bE!dt8dE

**E,t8C
2~ t8,E!g~E!exp~2bE!dt8dE

,

~4!

where g(E) denotes the density of states. The reader m
note thatg(E) is a constant at low enough energies and c
be incorporated into an analysis where uneven step size
used in the energy integration to account for peaks ing(E)
across some energy range@6,7,9#.

For this study,C(t,E) is chosen to be the velocity an
b51. Thus, we consider the behavior of the velocity au
correlation function~VACF!. The choice ofb51 does not
restrict the conclusion of this study regarding long-time ta
which, as we show later, turn out to be temperature indep
dent. The integration was performed using 5000 energy
els whose values ranged from near 0~the well minimum! to
E;25. Note that in the calculation using Eq.~4! first the
microcanonical relaxation function is determined at all t
energy levels by determining the dot product of the veloc
~in a chosen direction! at some reference time (t8) with that
of the velocity ~in the same direction! at some later time
(t81t). This quantity is summed over many periods a
normalized to provide the microcanonical relaxation funct
at that energy level.

B. Asymmetric potentials

A convenient feature of the symmetric potential studied
the ability to extract long-time information on a consta
energy system through use of the period of the motion of
system. However, whenCÞ1, this symmetry does not exis
and it is hence necessary, through many time steps, to a
tain the position and velocity of the system directly at lo
times. Since the autocorrelation functions of many ene
levels are required for this study, the method used previou
for the symmetric potentials is precluded.

However, as proved in recent work by Sarkar@9#, if we
can establish that the frequencyv}E asE→0, this implies a
decay of 1/t for the velocity autocorrelation function in
canonical ensemble. Thus, we attempt to find this relati
ship in order to establish a 1/t decay for these asymmetri
wells.

As an aside for readers whose knowledge of autocorr
tion function decay is limited to exponentials, we provide t
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following paragraph. In cases where relaxation behavior
hibits exponential-like decay, one typically finds a combin
tion of very fast time-scale dynamics and relatively slo
time-scale dynamics. Examples are~i! the intermediate time
relaxation of a massive object in a system of light oscillat
@10#; ~ii ! relaxation of an impurity in ans5 1

2 XYchain@11#.
In the case of relaxation of a particle in a 2D anharmo
well, there are no obviously disparate time scales. Hen
one would not expect exponential relaxation to equilibriu
but rather a decay in which characteristic time scales
absent, such as an algebraic decay. It is noteworthy tha
1/t decay found in 2D systems is the same as that in
systems and that removal of system symmetry leaves
asymptotic relaxation behavior invariant.

III. SYMMETRIC POTENTIAL: RESULTS

For the symmetric (C51) system, analysis is facilitate
by analyzing thex andy directions separately. However, th
period of motion of the system is the same for a given ene
in both directions which leads to the same microcanon
autocorrelation functions. Thus, the canonical autocorre
tion function and corresponding power spectrum will be
variant of the direction studied. Hence we will work in on
thex direction knowing that they direction will be identical.
Figure 1 shows the velocity autocorrelation function and c
responding power spectrum for this symmetric potential.
regression on the peak heights of the VACF as a function
time yields a decay;1/t, as shown in Fig. 1. The result

FIG. 1. Plot of the absolute value of the VACF versus time
a particle in a symmetric quartic potential characterized byC51.
The long-time relaxation is 1/t in nature. Note that the power spec
trum in the inset is given in arbitrary units.
4-2
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RELAXATION OF CLASSICAL PARTICLES IN TWO- . . . PHYSICAL REVIEW E 63 021114
agree completely with the relaxation behavior reported in
1D studies in Refs.@6#, @7#.

IV. ASYMMETRIC POTENTIAL: RESULTS

The goal here, once again, is to ascertain whether we
express the lowest frequencies as a linear function of
energy, as we approach the well minimum~i.e., asE→0!.
Since the potential energy is now asymmetric, we need
specify the direction; thus we will study both thex and y
directions separately. After sufficient study, it was det
mined that exploring energies between 1021 and 1022 would
enable us to expose the behavior we wished to study.

For the energy range tested, we performed simulati
using various values of the parameterC. For very small val-
ues ofC the potential becomes very nearly a 1D problem~in
thex direction!, but clearly the cross terms in Eqs.~2! and~3!
become less important, making this almost two separate
problems, one inx and the other iny. That this is true is seen
in the phase space plots for both directions, given in Fig
~x direction! and 3 ~y direction! for 100 time units at an
energy of 0.05. In Fig. 2, the outermost circuit is forC
50.2 and the effect of they direction coupling is negligible.
Likewise, in Fig. 3 the horizontal oval is forC50.2 and
there is negligiblex direction coupling in they direction. As
C increases toward 1, the cross terms in Eqs.~2! and~3! are
of the same order of magnitude as the diagonal terms and
effects of the coupling are seen very clearly in the ph
space plots. In Fig. 2, the dashed line that is spiraling aw
from the center is forC50.99. Figure 3 shows this sam
effect in they direction; this time the dashed line spira
toward the center. AtC51.0, we recover the symmetric cas
and, accordingly, the phase space plots are exactly circle
both thex andy directions. AtC slightly greater than unity,

FIG. 2. Plot ofx component of velocity of the particle,vx , as a
function of positionx for various values of the symmetry paramet
C at E50.05 ~see extended discussion in Sec. IV!.
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we once again lose symmetry. Figure 2 shows the states
C51.01, a solid line spiraling in toward the center. Lik
wise, they direction for this state shows a solid line spiralin
away from the center. For very large values ofC, the prob-
lem once again approaches a one-dimensional problem,
time in they direction. TheC5100 case is shown in Fig. 2
as the small circle in the center while Fig. 3 shows they
direction, which is a vertical oval.

In order to determine if the frequency is linear in ener

FIG. 4. Plot of vx versusE for 500>C>0 showing thatvx

}E asE→0.

FIG. 3. Plot ofy component of velocity of the particle,vy , as a
function of positiony for various values of the symmetry paramet
C at E50.05 ~see extended discussion in Sec. IV!.
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and thus make a statement about the decay rate of the V
in the canonical ensemble of this potential, we explore
frequency in each direction~bothx andy! as a function ofC
andE.

A. x direction

In Fig. 4 we show thex direction frequency as a functio
of energy for various values ofC. It is clear from Fig. 4 that
there is a linear dependence of frequency as a function
energy for small enough energies. It is interesting, howe
to note what occurs whenC takes on values between 0 and
Recall that theC50 state is a 1D problem, while theC
51 state is the symmetric 2D problem. Both of these sy
metric systems should provide the samex direction fre-
quency and this is seen in Fig. 4. When we look at how
x direction frequency changes withC at a constant energy
we find the function to be unimodal in that range, with ea
end point giving the same frequency. This is shown in Fig
for the state whereE50.05.

B. y direction

In Fig. 6 we show they direction frequency as a functio
of energy for various values ofC, both less than and greate
than unity@Figs. 6~a! and ~b!#. It is clear from these figures
that there is a linear dependence of this frequency on
energy of the system at low energy. However, it is of inter
to see if fitting parameters for this linear form can be giv
as a function ofC, thus reducing all the data shown in Fig.
into one function ofE andC. The form is reported as

vy~E,C!'AC1~0.536C0.567!E, ~5!

and the quality of fit is demonstrated by the lines in Fig
6~a! and 6~b!.

FIG. 5. Plot ofvx versusC for E50.05. Observe thatvx is the
same forC50 and 1. The systems begins to become sharply
like for C;0.9.
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With both thex and y directions having a linear depen
dence on the frequency as a function of energy as energy;0,
we can, via the work of Sarkar@9#, conclude that the deca
of the VACF for these asymmetric potentials in the canoni
ensemble will be 1/t.

V. CONCLUSIONS

In this article we have demonstrated via extensive num
cal studies that the long-time tail of the VACF of a partic

-

FIG. 6. Plot ofvy versusE for various values of the symmetr
parameterC. In ~a!, the values plotted~reading from top to bottom!
areC50.9, 0.5, and 0.1; in~b!, C5500, 50, 5, and 1.
4-4
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in an asymmetric 2D single-well quartic potential behaves
1/t. This long-time tail turns out to be the same as that fou
in 1D quartic wells and is possibly independent of the spa
dimension of the system, a result that would have been
ficult to establish without careful numerical analysis. T
present result, along with the arguments in Sec. VII of R
@6# @see Eqs.~45!–~50!#, suggests that slow relaxation i
local wells will dominate the low temperature relaxation
glassy systems that can be generically modeled via part
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connected via harmonic springs and with on-site anharmo
potentials@12#.
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